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To analyze social network data using standard statistical approaches is to risk incorrect inference. The
dependencies among observations implied in a network conceptualization undermine standard assump-
tions of the usual general linear models. One of the most quickly expanding areas of social and policy
network methodology is the development of statistical modeling approaches that can accommodate such
dependent data. In this article, we review three network statistical methods commonly used in the
current literature: quadratic assignment procedures, exponential random graph models (ERGMs), and
stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative
example of a model for a strategic information network within a local government. We draw inferences
about the structural role played by individuals recognized as key innovators and conclude that such an
approach has much to offer in analyzing the policy process.
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Social network methodology has a long research tradition, going back at least as
far as the 1930s (e.g., Moreno & Jennings, 1938). In the last 20 years, however, there
has been a dramatic growth in new and innovative network methods. An exciting
area has been the development of modern statistical approaches for the analysis of
social networks. For this special issue of the Policy Studies Journal, this article reviews
three important statistical methods that are currently widely used in social network
analysis and that are illustrated in the articles published in the special issue. The aim
is for a tutorial style, relatively nontechnical summary that will assist readers unfa-
miliar with these techniques. We assume that readers are knowledgeable about basic
network terms and concepts and standard statistical methods relevant to the social
sciences.

The article is focused on the three statistical methods, but in an actual study—as
is the case for any area of social science—the analysis cannot be divorced from
broader issues of research questions and hypotheses, research design, and data
collection. Other articles in this special issue discuss network-based research ques-
tions and design relevant to policy studies, and the empirical articles illustrate how
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the methods presented here can be incorporated into specific studies, with examples
of different types of network data collection.

The article is structured as follows. After introducing some terminology and
notation, we explain the distinctiveness of network data, discuss why special
methods are necessary, and illustrate some of the important research questions that
might be asked. We then summarize three statistical methods: quadratic assignment
procedure (QAP) approaches, exponential random graph models (ERGMs), and
stochastic actor-oriented models (SAOMs). We focus most attention on ERGMs by
providing an illustrative example of a model for a strategic information network
within a local government. We draw inferences about the structural role played by
individuals recognized as key innovators and conclude that the statistical modeling
of networks is better able to test policy theory than the descriptive network methods
often used in policy studies to date.

In this article, we typically concentrate on binary network data (i.e., a network tie
is present or not), but the three methods have been extended to a broad range of
other types of network data, including multiple, bipartite, and other network data
structures. There are a few constraints on the type of data that can be used for the
different methods. SAOMs require longitudinal panel data. ERGMs are typically
used for cross-sectional network data, but there are longitudinal versions. Although
ERGMs for valued data have been developed, current practice is to use binary data
for the network in question (exogenous predictors, either networks or attributes,
may be valued). As is noted below, more work needs to be done on using binary data
in network regressions using QAP, although binary data are fine for QAP network
correlations.

Of course, these three methods are not the only means of analyzing networks.
For readers requiring detailed information about network analysis more generally,
the now classic textbook on basic network concepts and earlier methods is Wasser-
man and Faust (1994). More recent methodological developments are described in
the volumes edited by Carrington, Scott, and Wasserman (2005) and by Scott and
Carrington (2011). Butts (2008) and Wasserman and Robins (2012) provide introduc-
tions to and reviews of current social network analysis. Kolaczyk’s (2009) excellent
text on network statistical models covers developments in the social network,
statistical, and physics literatures in detail. Pattison and Robins (2008) provide
a chapter-length review of network statistical approaches, focusing on ERGMs.
Snijders (2011) provides a comprehensive overview of the current state of the statis-
tical modeling of social networks. Jackson (2010) and Newman (2010) have produced
recent texts that describe a wide range of network methods.

Some Basic Network Terminology and Notation

The simplest form of a social network is a set of social actors with a possible
social relationship (or relational ties) among them. A social relationship can be quite
general: there is no supposition that this is “social” in the sense of “out-of-hours” or
“socializing”; nor is it necessarily a product of social media (although it may be), so
is not specific to “social networking” websites. In other words, a relational tie can be
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any form of social connection between two individuals that is relevant to the pur-
poses of the research. Possible relationships include: communicating, working with,
hating, bullying, trusting, and so on.

A network can be represented as a (mathematical) graph, with the actors repre-
sented by nodes (or vertices) and the relational ties by edges, visualized as dots with
lines between them. These different terminologies (actor/node; tie/edge) are often
used interchangeably. A binary tie variable Xij equals 1 if there is a tie between actor
i and actor j, and is 0 otherwise. Consistent with statistical practice, a notation is often
used whereby Xij = xij indicates that the variable for a possible tie between i and j
takes the value xij (which might be 0 or 1), with xij called an instantiation or realiza-
tion. (In other words, it can be convenient to differentiate the variable and the value
it takes in a particular instance.) Accordingly, empirical network data can be written
as a binary square sociomatrix or adjacency matrix x = [xij] with structural zeroes down
the diagonal to indicate that a node does not have a tie with itself. The corresponding
matrix of network variables is X.

This basic formulation can be extended in a variety of ways. X may be valued
instead of binary, although this article concentrates on binary data. The network may
be undirected where there is no direction to the tie (so that xij = xji and the sociomatrix
x is symmetric), or directed (where xij need not be equal to xji and the sociomatrix x
need not be symmetric). For directed networks, the term edge is replaced by arc.
There may be two or more relational ties measured on the same set of nodes,
resulting in two (or more) networks x and z, often known as a multiple or multivariate
network. If network data are collected across time in a panel data design, then the
network variable becomes Xijt to indicate a tie between i and j at time t. In this case,
there will be multiple sociomatrices xt indicating the network as observed at time
points t.

These descriptions are all for unipartite networks, where there is only one type of
node (i.e., actors). However, relational data can take different forms, including two
(or more) types of nodes. Such data can represent membership or association (e.g.,
actors may be members of groups), in which case there may be ties between nodes of
different types but not between nodes of the same type. Bipartite networks have two
types of nodes. In a bipartite network, the variable Xij indicates a tie from actor i to
group j, and the association matrix x may be rectangular (with no structural zeroes).

Of course, the nodes in a network are not just actors in the sense of expressing
ties to other actors: they may have certain qualities, motivations, or properties. Such
individual-level variables are called actor (or node) attributes. In this article, attribute
variables will be denoted by Yi for a variable pertaining to the attribute of actor i.
As before, yi is a realization and may take binary, categorical, or continuous values.
So, the vector y = [yi] contains data across all actors for the attribute variable Y. Of
course, there may be many such attribute variables in the one study.

Why Are Network Datasets Different?

Networks have become a popular concept in the social sciences, given increased
attention by the interconnected, globalized world in which we live. Of course, social
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networks have always been with us (Padgett & Ansell, 1993), but it is only in recent
decades that they have become so prominent a research tool. Many social scientists,
coming to network analysis for the first time, see it through the lens of familiar
standard statistical approaches. To do so is risky. It has been over two decades since
David Krackhardt has shown that even modest network effects can blow out alpha
levels dramatically (Krackhardt, 1988). In other words, if your data are networked in
some way, your standard null hypothesis significance test may be drastically wrong,
and you may not even know it.

The reason can be stated simply, even though it is the principal source of the
complexity in network research. Standard statistical approaches assume (at some
level) that observations are independent of one another; a network model expressly
does not. If a social tie between two actors does not imply some form of dependence,
then for the purposes of the research, there might as well be no connection, and the
network is irrelevant. So if networks are relevant, there is some level of complex
dependence in the data.

Social Influence

So, to take a simple starting illustration, observations on actors (i.e., attribute
measures) may be dependent based on the network. In other words, one observation
may be associated with another through network connections. An important
network research question is often one of social influence (sometimes called contagion
or network diffusion): that is, given a social network, do network partners influence
each other in some way? In other words, if there is a tie between actors i and j, then
it might be theorized that the actors may influence one another, so that their attribute
variables become similar to each other. For instance, we may adopt the opinions or
behaviors of our workmates, or one person may catch a disease through friendship
with an infected person.

Disease transmission is a paradigmatic case of network contagion. Let us
suppose that the attribute variable yi = 1 indicates that person i has the disease
(whereas 0 indicates good health). Suppose we are uncertain whether a new disease
is contagious or not, but we see the pattern of variable values yi = yj = xij = 1 across
many instances of i and j pairs (or yi yj xij = 1). That is, we observe many circumstances
where, for pairs of actors i and j with a tie between them, both actors have the
disease. Then we can treat this as evidence that the disease is contagious and that
it is possible to catch it through the network X. Notice that we can represent this
pattern of variables in a simple diagram (Figure 1a), where we have two dotted
nodes (representing being diseased) connected by a tie. If for a given i and j, we have
yi yj xij = 1, then we will see the network pattern in Figure 1a. The pattern is what
is called a network configuration, in this case, one that includes both tie and node
information. This is a basic configuration for network influence.

The point of this example is that, with network influence, it follows that there
must be dependence among observations of the disease, dependence arising from
the network ties. Suppose our research question relates to the factors that might lead
to an individual being vulnerable to infection with the disease. There are at least two
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general sources for infection that we might hypothesize: (i) those relating to the
individual, i.e., attributes; (ii) the possibility of contagion, i.e., network transmission
of the disease. If we ignored the second, one standard approach to predict a binary
variable such as disease status would involve a logistic regression to predict yi from
other attribute variables pertaining to i (genetics, age, behavior, and so on). This
might be fine for the many diseases that are not contagious.

Dependence among observations, however, undermines this whole analytic
strategy. If the disease is transmitted from others in the network, we are obviously
missing an important source of infection if we concentrate on attribute variables
alone. Yet, it is not simply that we have forgotten an important variable in our logistic
regression. Rather, contagion implies that there is a need for a different type of
analysis that caters for the dependence. The convenient distinction between predic-
tor and outcome variables, the cornerstone of regressions, is now muddled.

With network contagion, we have to predict yi from yj as well as possibly other
attribute variables—in fact we have to predict Yi = 1 from yjxij. And then we have to
predict Yj = 1 from yixij. Notice how the predictor variable in the first case (yj) has
now become the outcome variable in the second. It is possible to do these predic-
tions in a formal sense with logistic regression procedures (and the authors admit
to doing such things in the days before they knew better.) However, the approach
is certainly not a standard logistic regression—in some parts of the regression, a
variable is a predictor, while in other parts, it is an outcome—so the correctness of
the procedure is not immediately obvious. In fact, it is now well known that the
resulting estimates may be substantially incorrect, and analysts will not know
whether this is the case.1

Of course, if we have longitudinal network data, we can study this process in a
more dynamic way. Let us suppose that we observe the situation in Figure 1b. At time

(a) Configuration for network influence/selection 

(b) Longitudinal configurations for network influence 

Time 1 Time 2 

(c) Longitudinal configurations for network selection 

Time 1 Time 2 

Figure 1. Some Network Configurations Involving Tie and Attribute Variables (Circle Indicate Nodes;
Lines Indicate Ties; Dotted Circles Indicate Nodes with Attribute Value 1).

Robins/Lewis/Wang: Statistical Network Analysis 379



1, we see a healthy actor who is tied to a diseased actor; whereas at time 2 both actors
are diseased. If we see many instances of this pattern across time, we can take this as
evidence for a contagion process.

This discussion has focused on contagion through a dyadic network tie. Robins
(2009) and Wasserman and Robins (2012) used the term dyadic influence to describe
this situation. However, it is also possible that individual attributes may be influ-
enced and so change because an individual occupies a particular network position,
rather than being connected to a particular type of individual. For instance, an
important theme in social network theory discusses the advantages that may accrue
to network brokers, individuals who occupy structural holes, “gaps” in the network
structure (Burt, 1992). It is frequently argued that individuals who occupy these
gaps in the structure may gain personally (e.g., increase in power, wealth, and so on,
depending on context). In this case, an individual who occupies a particular
structural position achieves a positive change in their attribute values. Robins
(2009) and Wasserman and Robins (2012) referred to this situation, where a network
position (as opposed to dyadic connections) influences attribute values, as general-
ized influence.

Social Selection

The foregoing presupposes that the attribute variable can change (a person can
become diseased) but that the network tie does not. But of course networks are not
static, and ties come into and out of existence. One reason why ties might occur
is because the two actors have similar attributes, a process known as homophily. For
instance, you may be more likely to become friends with people of your own age.
Suppose that, in our example, diseased individuals come together and become
friends through support groups relating to the disease. Then we would expect to see
more pairs of friends, both of whom have the disease—in other words, yi yj xij = 1.
This is also the configuration from Figure 1a. Yet, this is obviously not social influ-
ence. In this case, it is the network tie that has been created by the disease status.

We describe social selection as the situation where attribute variables lead to the
formation or dissolution of network ties; in contrast to social influence, when the
presence of a network tie leads to a change in attributes. Homophily is not the only
social selection process: For instance, actors with certain attributes might express or
receive more ties (or be more active or popular).

So, we see that Figure 1a is a configuration that can result from either social
influence or social selection. Without further information, we cannot determine
which process applies. This is akin to a cross-sectional correlation when we infer
association, not causality. With Figure 1a, we have a configuration that represents an
association between similar actor attributes and network ties, but we cannot usually
be sure whether we have influence or selection. (Of course, sometimes we can be
sure. For instance, if the attribute is unchanging—, e.g., sex—we know the process
cannot be influence.)

Across time, however, homophilous selection can be apparent. The sequence
represented in Figure 1c illustrates a tie forming by time 2 based on shared nodal
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attributes at time 1. If we observe enough of this type of change, we conclude that
the common attributes at time 1 lead to a network tie at time 2, and hence infer a
selection process.

Again, discussion of homophily focuses attention on dyadic selection, but
individuals with particular attributes may seek to obtain a network position. For
instance, the motivations of individuals may influence whether or not they seek
to occupy structural holes (e.g., Kalish, 2008). Robins (2009) referred to generalized
selection as the social process whereby individuals with certain attribute values
sought particular network positions, rather than dyadic network partners.

Structural Processes: Network Self-Organization

Selection processes suggest new possibilities for research questions that are
not available for standard datasets. Selection deals with tie formation arising from
patterns of attributes. However, ties may also form because of the patterns of other
ties. These structural processes lead to network configurations that do not involve
attributes at all. The simplest to understand is reciprocity in directed networks. The
presence of a tie from actor i to j may encourage the formation of a tie from j to i.
Reciprocity is a basic social process that we see in many (although not all) social
networks. The point is that the force for reciprocation may occur, irrespective of
particular actor attributes. This does not mean that it is universal or deterministic,
but tendencies toward reciprocity are often very strong.

Network closure is another important structural effect that frequently occurs
in social network data. There is often a tendency for network ties to triangulate,
so that a 2-path from i to j to k may close into a triangle with the addition of a tie
between i and k. Theoretical discussion of the importance of triads in networks
goes back to the beginnings of the twentieth century (Simmel, 1908). Empirical
evidence for network closure (sometimes referred to as network clustering) is well
established (Davis, 1970). Granovetter (1973) argued that certain types of tie (i.e.,
strong ties) tend to close, whereas weak ties do not. Burt (1992) pointed out that
the presence of nonclosure (structural holes) was also important. In a nonclosed
2-path, i to j to k, actor j can reap certain advantages as a network broker between
nodes i and k.

Network closure can arise because individuals tend to introduce their network
partners to each, or because they tend to operate in collaborative team-like struc-
tures. Lubell, Robins, and Wang (2011) point to a number of possible outcomes:
increased social support and cooperation, closer scrutiny of individual actions, and
stronger group norms or localized cultures.

Another important structural feature of networks is the dispersion of the degree
distribution, or using different terminology, the spread of the network activity.
The degree of a node is the number of ties expressed by that node, and the degree
distribution is the distribution of degrees across the entire network. Sometimes a
social network may be highly centralized around a few high-degree nodes (known as
hubs) with most nodes having much lower degree. The result is a highly dispersed or
skewed degree distribution, or a wide spread of network activity. A popular version
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is the so-called inverse power law or scale-free degree distribution, which may
emerge from preferential attachment processes whereby the popularity of some
nodes attracts further popularity (Albert & Barabási, 2002; Barabási & Albert, 1999).
There have been claims that scale-free networks are ubiquitous, but there is plenty of
evidence that this is not so (Li, Alderson, Tanaka, Doyle, & Willinger, 2005). Poor
estimation procedures when fitting degree distributions has sometimes led to incor-
rect inference that a scale-free model best represents the data (Jones & Handcock,
2003). Even so, it is not uncommon for social networks to be centralized around a
few high-degree nodes, with a positively skewed degree distribution. There are
occasions, however, where networks are not so centralized and have a more “equal”
distribution of degrees among nodes. Whatever the empirical outcome, the shape of
the degree distribution and the level of centralization is an important structural
feature of the network. (For directed networks, there are in fact two degree distri-
butions, relating to in- and out-degrees, so it is possible that one may be skewed and
the other not.)

Additionally, there are novel structural processes possible with multiple
network data. With two types of relational tie, X and Z, on the same set of nodes, one
simple research question is whether there is an association between the two net-
works, so that the presence of a tie xij between nodes i and j is associated with the
presence of tie zij. We call this network entrainment, where the ties in one network
tend to be aligned with those in another. This is only one of many types of network
patterns that may apply to multiple networks. For instance, Padgett and Ansell (1993)
argued that the structural position (betweenness centrality) in marriage, commerce,
and political networks jointly contributed to the overall influence of the Medicis. In
a more recent context, Scholz, Whiteman, and Berardo (2011) analyzed the impact of
structural position among government agencies and stakeholders in four separate
resource networks on the likelihood that projects will gain funding in a cooperative
funding program.

We can present these different types of network structures again through sets
of representative network configurations, this time not involving actor attributes.
Figure 2 presents configurations representing reciprocity (a pair of reciprocated
arcs), closure (a triangle), degrees (stars of various order), and entrainment (a pair
of edges of different types). The reciprocity configuration only applies to directed
networks, whereas the others are presented in Figure 2 for undirected networks.
There are of course various directed counterparts of these (Robins, Pattison, & Wang,
2009).

Configurations such as those in Figure 2 can be thought of as the building
blocks of network structure. Certain policy theorizations are directly translatable
into such basic forms. For instance, Berardo and Scholz (2010) proposed the
risk hypothesis whereby actors in governance systems prefer different network
positions depending on whether the underlying motive is for coordination or for
more risky cooperation. Under coordination conditions, actors prefer to connect
to popular nodes for efficiency in information seeking. This type of structure can
be represented with the star-like configurations in Figure 2. On the other hand, in
more risky circumstances, actors prefer closed network structures, represented by
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the triangle in Figure 2, where both cooperation and adherence to norms can be
more rigorously scrutinized.

These (and other) structural patterns can occur without any effects of actor
attributes. In other words, the network ties themselves form into patterns, sometimes
termed network self-organization (Wasserman & Robins, 2012). Not only may there be
dependencies among attribute variables due to network ties, as in social influence,
but there may be dependencies among the network tie variables themselves. Without
dependence among ties, there can be no regular patterning of ties. So, the presence
of network structure accentuates the issue of dependence in social network data,
emphasizing the problems in using standard statistical approaches that rely on
independence.

Investigating these local network patterns enables us to examine the structure
of the network. The structure of a system is not a research issue that often occurs in
other areas of social science. We can ask questions about whether, for instance, a
more centralized structure is more effective in spreading information, whether a
denser network encourages more collaborative outcomes, and whether a more dis-
connected network is associated with greater levels of competition among sub-
groups. These questions of network performance and effectiveness are among the
most challenging but exciting research issues for empirical social network analysis.

Throughout this exposition, we have emphasized that we are not talking about
universal, deterministic effects. Rather, social networks are changeable, stochastic
entities, but they can evolve according to stable self-organizing principles. Accord-
ingly, we require statistical techniques that can cope with the dependence implied by
the very use of social network data. In the remainder of this article, we summarize
three important approaches that are illustrated further in the empirical papers in this
special issue.

2-, 3-, and 4-star 

Reciprocity 

Triangle (closure) 

Multiple network entrainment 
(Full and dotted lines represent 
different relational ties) 

Figure 2. Some Network Configurations Involving Only Tie Variables.

Robins/Lewis/Wang: Statistical Network Analysis 383



QAP (and Related Approaches)

QAP is used as a statistical test to determine whether two matrices are corre-
lated. As such, it is a technique that is not specific to the analysis of social networks.
It was originally proposed by the statistician Mantel (1967) to examine whether
disease was geographically clustered. QAP was then championed by the mathemati-
cal psychologist Hubert (1987), who first coined the phrase “quadratic assignment,”
as a quite general data analytic approach (Hubert & Schultz, 1976).

The social network application is obvious, however. We often want to know
whether two networks measured on the same set of nodes are associated in some
way (perhaps entrained as in Figure 2). For instance, a researcher might ask whether
the informal communication network within an organization aligns with the formal
organizational hierarchy. Krackhardt (1987) proposed that QAP could be used to
address such network research questions.

If we take two adjacency matrices, x and z, we can produce a statistic of associa-
tion (e.g., a Pearson correlation coefficient) just by treating the corresponding cells
of the two matrices (excluding diagonals) as a data point involving two variables (i.e.,
xij and zij).2 A correlation or some other association statistic can then be calculated in
the normal way.3 If all the network tie variables are independent of each other, then
this statistic can be treated in precisely the same way we handle a regular correlation
and subjected to a standard null hypothesis test to infer whether the value was
significantly different from 0, thereby to demonstrate (or not) an association between
the two networks.

However, we know that social networks are self organizing and that there will
be dependence among network variables. The standard tests do not apply because
the distributional assumptions underpinning them are now not applicable given the
dependent observations. QAP provides a nondistributional bootstrapping method
of testing whether there is an association between x and z.

The QAP approach involves permutation of the node labels. Nodes are labeled 1,
2, and so on up to n. In a permutation p, node 1 is relabeled by chance to be node
p(1)—where p(1) is a number between 1 and n chosen randomly—node 2 is relabeled
to be node p(2), and so on. Then the permutation p is applied to one of the matrices,
say x, to produce p(x). In other words, what was the first row and column in matrix
x is now row and column number p(1), and so on. What has happened is that the
rows and columns have been swapped around in x but of course all the existing
structure in the data has been retained because we have not changed any of the
entries in the matrix itself, just their ordering. Meantime, matrix z is left unchanged.

The argument is that if there is an association between x and z it will depend on
the labeling of the nodes. For instance, suppose x is a network of informal commu-
nication and z the formal hierarchy in an organization. We might hypothesize an
entrainment association such as workers communicating with their bosses. In that
case, for instance, if node 2 is the boss of node 1, then we expect that node 1 will
communicate with node 2: that is, there is a dependency between z21 and x12 such that
if z21 = 1 there is a greater chance that x12 = 1. However, this obviously depends on the
node labeling so that if we relabel node 1 to be (say) node 77 and node 2 to be (say)
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node 93, the expected dependence between z21 and x12 now disappears because
nodes 1 and 2 in x are no longer the same nodes in z.

So, if there is an association, we expect that the correlation (or other association
statistic) for the real data, x and z, will be larger than the statistic for the permuted
p(x) and z. Of course, this depends on the extent to which the permutation drastically
changes the reordering of the nodes. So we use a simple bootstrapping test by
performing many permutations (say, 1,000), thereby creating a sample of 1,000
correlation coefficients from a null distribution where there is no association. If
the observed correlation in the real data is larger than 95% of the correlations from
permuted x, we infer that there is a significant association between x and z.

The QAP procedure we have described is for a bivariate association between two
networks and is the classic form proposed by Mantel (1967) and Hubert (1987). QAP
has been extended to a version of multiple network regression, multiple regression
QAP (MRQAP), whereby multiple matrices are used to predict a “dependent”
network. The predictor matrices may include matrices derived from combinations of
actor attributes (e.g., similarity across pairs of attributes to check homophily effects).
The regression coefficients are estimated in the same way as for a standard regres-
sion. Each of the estimates, however, is tested individually in a QAP-type procedure
focusing on the given matrix, while the other matrices remain unpermuted. MRQAP
has been more controversial than QAP because previous approaches to permutation
in a multiple regression framework have been debatable. Dekker, Krackhardt, and
Snijders (2007) proposed a new permutation approach for QAP (“double semi-
partialling”) as among the most robust approaches. This has now been implemented
in commonly used social network analytic software such as UCINET (Borgatti,
Everett, & Freeman, 2002). Dekker et al. (2007), however, pointed to some limitations
of MRQAP tests. They noted that their study was limited to models where the
dependent variable was continuous or countable integers. They concluded that
further work was needed because “we do not know the behaviour of the different
MRQAP approaches for models wherein the data are binary or ordinal, as is often
found in social network data” (Dekker et al., p. 580). So while the application of
QAP to binary data is fine, MRQAP with binary network data should be used with
appropriate caution.

Comparison of Data with Null Distributions of Graphs

Although strictly speaking, the approach we describe now is not a permutation
test, it does simulate a distribution of graphs against which the data are compared,
and hence bears some similarities to QAP. It also is a procedure that in many ways is
a precursor of ERGMs, discussed next.

The approach goes back to Katz and Powell (1957), who proposed a number of
conditional uniform graph distributions. The simplest is the uniform distribution of
graphs with a fixed number of edges (and nodes). In this distribution, each graph
with the right number of edges and nodes has equal nonzero probability with all
other graphs having zero probability. In effect, this is a distribution of random
graphs conditional on a fixed density. It is an easy distribution from which to
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simulate a sample of (say) 1,000 or more graphs. A researcher can then look at any
feature of the observed data and check against the same feature from the sample. For
instance, the level of reciprocity may be of interest in directed graphs. The distribu-
tion of the number of reciprocated ties from the sample can be compared with the
observed data. If the number of reciprocated ties is extreme in the distribution from
the sample, there is evidence for a specific effect of reciprocation. In other words, the
null hypothesis that the presence of reciprocated ties in the data can be explained by
a random process is rejected.

This bootstrapping method can be useful in examining the presence of local
network patterns in the data (the patterns are often referred to as configurations or
motifs). The approach has a well-established tradition in sociological network meth-
odology but recently has also been introduced more widely across network science
(Milo et al., 2002).

ERGMs

ERGMs are basically models for network structure and social selection effects.4

They are typically used with cross-sectional network data, although longitudinal
versions have been developed. Using these models, one can infer whether a configu-
ration occurs in the network more than expected by chance, given the other effects
in the model. For example, if a parameter for triangles is included in the model
along with other configurations such as edges and 2-stars (see Figure 2), one can
infer whether there are more triangles in the network than expected simply from the
number of edges and 2-stars. For a given number of edges, a certain number of
triangles will occur just by chance, similarly for a given number of 2-stars. It is not
enough to infer the presence of a closure process only by observing a number of
triangles. Rather, inference needs to be based on a large proportion of 2-stars closed
into triangles and more than expected given the density.

The technical and mathematical details of ERGMs have been covered in a
number of recent reviews (e.g., Robins, 2011), so here we concentrate on a broad,
intuitive description. Parameters in the models relate to network configurations
akin to those we presented in Figures 1 and 2. Statistics for ERGMs are basically the
counts of these configurations in the observed data. It is assumed that the observed
data come from a graph distribution, and parameters are estimated based on
maximum likelihood criteria. Because of the assumed dependence in the data,
however, maximum likelihood estimates have to be obtained through computer
simulation procedures.5 A positive (negative) parameter estimate indicates that there
are more (fewer) of that configuration in the network than expected by chance,
conditional on other effects in the model.

With an ERGM, it is important to step back from the dependent/independent
variable distinction so familiar in regressions and other general linear model tech-
niques. The unit of analysis in an ERGM is the network tie variable, so in one sense
each network tie is the dependent variable. However, the presence of a tie may be
predicted from the presence of other ties, so at one point in the model the network
tie is an outcome and at another point the same variable is a predictor. This arises
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because of the dependencies among the tie variables. The result is that an ERGM in
effect looks for small network patterns—the configurations—in the data. A param-
eter for a configuration expresses how prevalent this pattern is in the network and
that inference provides the interpretation. This is where any analogy with regression
breaks down. In a standard regression, a parameter expresses the increase in the
predictor that is required to increase the outcome variable by a set amount, holding
other variables constant. Because the predictor/outcome variable distinction breaks
down, this interpretation is not readily available for ERGMs.6

Recall earlier we described the Berardo and Scholz (2010) risk hypothesis, where
to minimize risk, actors might prefer closed network structures as in the triangle in
Figure 2. An ERGM can provide evidence that triangle configurations are more
prevalent in the data than expected by chance (conditional of course on the other
effects in the model). So a strong positive triangle parameter would indicate trian-
gulation in the data, hence if we follow Berardo and Scholz, one interpretation might
be that this network invokes collaboration that is seen as risky by the actors.

However, sometimes additional data are used as exogenous to the network to
assist in predicting the presence of network ties. These may include attributes as
well as dyadic covariates (other types of networks, or pairwise measures such as
spatial distance between actor locations). When some data are exogenous, then
the predictor/outcome distinction is maintained, and we can use analogs of some
traditional techniques to aid interpretation for these exogenous effects (e.g., below
we illustrate an odds ratio analysis using attribute variables.)

An appealing feature of ERGMs is that they explicitly model dependence
among network tie variables. There are various dependence assumptions that can be
applied. The current state of the art is to use social circuit dependence proposed by
Snijders, Pattison, Robins, and Handcock (2006), which is most likely to produce
converged parameter estimates in nondegenerate models.7 Social circuit parameters
include effects for star configurations (degrees) as in Figure 2; but instead of a
parameter for a single triangle, incorporate effects for multiple or k-triangles as
depicted in Figure 3. The use of these closed, triangular configurations, with tri-
angles “stacked” on one another, helps technically with modeling larger, denser
regions of the network. The k-triangle configuration is accompanied by a lower order
k-2path, which represents multiple local connectivity in the network (Figure 3).

Counts for the three families of configurations—k-stars, k-triangles, and
k-2paths—are combined into the one statistic for each family in the way described by
Snijders et al. (2006). These are the so-called alternating statistics, one for each family.
The combining of statistics in this way simplifies the model and controls against
model degeneracy. The result is that a basic social circuit model for an undirected
network might contain four parameters.

• An edge parameter, representing the underlying propensity to form ties, and
analogous to an intercept in regression.

• An activity spread or centralization parameter, based on the k-star (degree) effects
(alternating stars). A positive parameter estimate suggests skew in the degree
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distribution, whereas a negative estimate indicates a more homogeneous sharing
of degrees among nodes.

• A multiple triangulation or closure parameter based on the k-triangle configura-
tions (alternating triangles), with a positive estimate suggesting closure effects in
the network.

• A multiple connectivity parameter based on the k-2path configurations (alternating
2paths), with a positive estimate suggesting nonclosure and the presence of
structural holes in the network (network brokerage).8

Social selection effects can also be included in an ERGM, for instance the homophily
configuration in Figure 1. Additionally, it is often desirable to include basic attribute
activity effects to represent whether actors with a particular attribute tend to express
more ties than other actors. If one class of actors is more active, there will be more
ties among them anyway, and there may be no need to postulate a specific homophily
effect. Accordingly, one can use ERGMs to assess whether there is a homophily
process over and above a simple activity effect.

Attribute effects are sometimes included in models as controls to see whether
there are residual structural effects present. Sometimes they are the center of
research attention, when the structural effects can then be viewed as controls for the

k-triangles 

2-triangle 3-triangle 

2-2path 3-2path 

k-2paths 

Figure 3. Some Configurations for Exponential Random Graph Model Social Circuit Models.
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dependencies in observations, permitting principled inference about the association
between attributes and ties (e.g., as in homophily). Once the structural effects are
controlled in this way, it is possible to undertake a post hoc analysis, akin to an odds
ratio analysis from a logistic regression, to aid interpretation of the attribute effects.
We illustrate how to do this in our example.

The effects we have described in this section are basically for undirected graphs.
With directed graphs, there is a natural increase in the number of possible configu-
rations. Most fundamentally, there is now a reciprocity parameter in the model to
capture tendencies for reciprocated ties within dyads. There are separate alternating
star parameters for the in- and out-degree distributions, representing centralization
in network popularity and activity, respectively. The number of closure parameters
also increases, given that triadic configurations now have direction on the ties; most
importantly, transitive triadic structures can be distinguished from cyclic triads.
These and other effects are described and interpreted by Robins et al. (2009).

Once an ERGM has been fitted to network data, it is possible to simulate from the
parameter estimates to obtain a sample of graphs consistent with the model. Then
features of these simulated graphs can be compared with features of the data to see
how well the model can reproduce them (Hunter, Goodreau, & Handcock, 2008).
This is a diagnostic goodness of fit procedure that tells us which features of the
observed data are not well explained by the model and may indicate the type of
additional effect to include in a subsequent model to improve fit.

Because ERGMs model quite complex dependencies, they do not always result in
converged parameter estimates, or models may in some other way be degenerate or
near-degenerate (see Snijders et al. [2006] for a discussion). In these cases, the model
is not adequate to the data in some way and needs to be adjusted (see footnote 7). So,
it is important to ensure that there has been successful convergence. If it is not
possible to obtain convergence, then sometimes it may be suitable to use a simpler
convergent ERGM (with fewer effects) as a null distribution of graphs against which
to compare the data and draw inferences about particular structural features. This is
analogous to the conditional uniform graph distribution approach discussed above.

ERGMs have been applied to a wide range of relational data, including bipartite
networks (Wang, Sharpe, Pattison, & Robins, 2009) and multiple networks (Pattison
& Wasserman, 1999). Early work on ERGMs involving missing network data and on
snowball sampling of networks has shown considerable potential (Handcock & Gile,
2010; Koskinen, Robins, & Pattison, 2010).

Influence Models

The models we have described are for social selection. As we noted above, it may
be difficult to distinguish selection from influence in cross-sectional data. There are
influence extensions of the ERGM approach, however. Autologistic actor attribute
models model interdependent actor attributes Yi as a function of exogenous tie
variables Xij (and possibly other exogenous attribute variables and dyadic covari-
ates), whereas an ERGM models the interdependent tie variables Xij (Daraganova &
Robins, in press).
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Autologistic approaches to influence processes are not the only possibility.
There is a long tradition in network methodology of using autoregressive and other
models for similar purposes (e.g., Friedkin, 1998; Friedkin & Johnsen, 1990, 1997;
Valente, 1995; see Mason, Conrey, & Smith, 2007, for a review).

An ERGM Example: A Strategic Information Network in a Local Government

The topic of innovation is most often approached as one that relates to the
private sector, and especially to corporations with high levels of flexibility and the
freedom to pursue big ideas without the layers of oversight that accompany gov-
ernment and publicly funded services. Where government is discussed in relation
to innovation, it is generally about its role in stifling innovation, and in policy
studies, there is often examination of what governments should do to encourage
others to innovate. The topic of governmental innovation (or how governments
innovate) has had less attention paid to it and is of interest in its own right, with a
number of unresolved issues, such as the kinds of actors that are involved and the
different contributions that politicians and bureaucrats (insiders) and outsiders
make as innovators. A study of 11 local governments in Australia examined inno-
vation inside government, with networks expected to be a key variable. This study
is briefly summarized here, and the network data collected from one of these
governments, referred to as Parkside (a pseudonym) is used to demonstrate the
insights that can be generated from ERGMs. The full study is reported in Consi-
dine, Lewis, and Alexander (2009).

There are many lines of inquiry that could be taken to this rather broad and
little researched topic. In this study, four aspects were central. The first was one of
normative frames, related to how those inside government understand the notion
of innovation. The second was about the perceived impacts that the procedures of
government have on innovation. The third was the familiar notion of hierarchy in
organizations, and the fourth was interpersonal networks, in contrast to the formal
structural relationships between individuals. Normative frames, the procedures
of government, and the effects of hierarchy are all seen as important in shaping an
individual’s ability to achieve things in organizations through his/her position.
Networks provide a way forward in examining power relations shaped by informal
patterns of interaction rather than formal positional power, which is the often the
starting point in policy studies.

Networks provide access to embedded resources (Lin, 2001). As others have
argued, the ways in which different groups and different types of network ties
matter are important to innovation adoption (e.g., Coleman, Katz, & Menzel, 1966;
Rogers & Kincaid, 1981; Valente, 1995). It was expected that the collection of network
data and its analysis would contribute substantially to understanding innovation
inside government. In the context of this article, the data collected for this study are
used to analyze networks inside government, and the other three dimensions—
innovation norms, innovation procedures, and formal hierarchical positions—are not
directly addressed, although as will be shown, hierarchy is impossible to ignore
in this case.
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If we examine formal positions and roles, a reasonably common approach to
locating important actors in studies of the policy process, we can discover who has
power by sitting on committees and having particular portfolio responsibilities
and who is more senior in the hierarchy. But who actually interacts with whom, and
how does this affect policy? Actors are connected into relationships through net-
works, which significantly shape political power (Knoke, 1990) and policy choices
(Laumann & Knoke, 1987). Networks of influential actors have access to a set of
resources that can be used to wield informal power within a policy sector (Lewis,
2006) and to significantly shape the policy agenda (Lewis, 2005). In one attempt to
integrate studies of policy diffusion processes with considerations of policy net-
works, Mintrom and Vergari (1998) demonstrated the importance of different types
of networks for different phases of innovation. “Entrepreneurs” (akin to the inno-
vators here) used external and internal networks to get new items onto the policy
agenda (external for generating new ideas from elsewhere, internal for shaping
proposals so that they gain attention) and internal networks to get the required
approval for the innovation.

The data for this study were collected from 11 municipalities in the state of
Victoria, Australia. A call for expressions of interest to participate in this research
went out through the regular newsletter of an umbrella industry association for local
governments, community groups, and individual citizens. In response, 11 munici-
palities volunteered to participate, and they were all included.9 The top four levels of
bureaucrats (the Chief Executive Officer, directors, managers, and team leaders/
coordinators) at each of the 11 participating local governments were surveyed using
a self-completed questionnaire. The senior bureaucrats referred to in the analysis
below are the CEOs and directors, and the junior bureaucrats are the managers and
team leaders/coordinators. All the politicians in each municipality were invited to
participate. The questionnaire was distributed either at meetings of staff, through the
internal mail system, or in person by the research team.10 Overall, 765 responses
were received (an 81 percent response rate). For Parkside, 89 of the 102 eligible
bureaucrats completed the survey, as did 5 of the 7 politicians (86 percent). We have
ignored the missing nodes for this illustrative analysis, a not uncommon approach in
network analysis. There are nevertheless problems in doing so, and ERGM methods
for dealing with missing network data are being developed (Handcock & Gile, 2010;
Koskinen et al., 2010), but we leave these complexities to one side for the purposes of
this article.

Network information was collected using a name generator (open nominations),
with respondents asked to nominate up to five people they went to most, first when
they wanted to get advice on a work-related issue and second when they wanted to
get strategic information about something in their government. The strategic infor-
mation question is the one that is used in the following analysis. For this question,
the nominations were limited to people from within their own organization.
Network ties were recorded simply as present or absent, with no attempt to measure
weighting of ties. The network tie data are directed based on who nominated whom
but has been symmetrized to create an undirected network (for purposes of a
simpler exposition here).
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Following the first survey-based stage of this study, four of these 11 govern-
ments were then selected to participate in a more detailed second stage of the
research. We conducted follow-up interviews with 104 respondents from across
these four governments to gain a more detailed understanding of the nature of
innovation at each location. Parkside was one of these four, and 25 people (politi-
cians, and senior and junior bureaucrats) were interviewed in that government.
Respondents were asked to identify important innovations in their municipality to
detail who was involved in each case, and to nominate the key innovators in their
municipality.11 No limitations were placed on the number of “key innovator” nomi-
nations that could be made, and these could include politicians, bureaucrats, or
people outside the government.12

To enable us to identify the innovators at each municipality, a “key innovator”
score was calculated. Using these nominations, politicians and bureaucrats at each
municipality who had completed the initial survey were assigned a score that is the
percentage of total “key innovator” nominations they received from the respondents
in their municipality. Those who were not nominated at all were assigned a score of
zero. In Parkside, scores on this scale ranged from 0 to 12.4, with a mean score of 1.1
and a standard deviation of 2.2. Key innovators in the models presented below are
those who received two or more nominations, so we use a simple binary indicator of
innovation, again for the purposes of simplicity. It would also be possible to develop
models that used the innovator score as a continuous actor attribute variable.

We fitted three models with an increasing number of actor attribute effects.
All models contain the following social circuit structural parameters: edge, activity
spread, closure, and multiple connectivity. For each actor attribute variable, we
include homophily and activity effects. Parameter estimates for all three models are
in Table 1.

Our first model included the structural effects plus the attribute parameters for
the innovator variable (KI = “key innovator”) because of the importance of innovation
to the study. In terms of structural effects, we see the following:

Table 1. Parameter Estimates (Standard Errors in Brackets) for Three Exponential Random Graph
Models for the Strategic Information Network

Parameter Model 1 Model 2 Model 3

Structural
Edge -3.44 (0.59)* -3.42 (0.61)* -3.16 (0.64)*
Activity spread (centralization) -0.31 (0.19) -0.28 (0.19) -0.15 (0.21)
Multiple triangulation (closure) 1.06 (0.12)* 1.04 (0.11)* 0.88 (0.11)*
Multiple connectivity 0.02 (0.02) 0.01 (0.02) -0.08 (0.03)*

Attributes
Innovator activity 0.13 (0.13) 0.22 (0.14) 0.16 (0.18)
Innovator homophily 0.84 (0.32)* 0.76 (0.34)* 0.63 (0.34)
Politician activity -0.31 (0.16) -0.15 (0.19)
Politician homophily 1.18 (0.78) 1.31 (0.78)
Senior bureaucrat activity 1.39 (0.28)*
Senior bureaucrat homophily -1.93 (0.77)*

*Indicates significant estimate.
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• a significantly negative edge estimate, which simply indicates that isolated ties
are relatively unlikely (this is akin to an intercept term in a regression);

• a nonsignificant activity spread estimate, suggesting that conditional on the other
effects, there is no tendency for a highly centralized network (in other words,
to the extent there is centralization, it must be due to triangulation or attribute
effects); in short, there is no evidence for preferential attachment in this data;

• a positive and significant estimate for closure: this is a network built around
collaboration and control (Berardo & Scholz, 2010; Lubell et al., 2011); and

• a miniscule effect for multiple connectivity: there is little evidence for substantial
network brokerage.

In terms of the KI attribute, we see significant and positive homophily and a non-
significant activity effect. So while this model suggests that key innovators do not
have more communication partners than others, they do tend to communicate more
with other innovators.

For binary attributes, a simple post hoc analysis of conditional odds ratios can
aid interpretation, analogous to the odds ratio calculations available in logistic
regression procedures. The difference here is that we are using the attribute esti-
mates to calculate the conditional odds of a tie being present for a pair of actors with
given attributes, compared with the conditional odds of a tie being present when
both actors score 0 on the attribute variable. In this case, the comparison category is
when both actors are not innovators. So, we can calculate the conditional odds ratio
of a tie between an innovator and noninnovator, and between two innovators, com-
pared with two noninnovators. The conditionality here is equivalent to the statement
that all other effects are equal, including that the comparable pairs of actors have the
same network neighborhood of configurations (i.e., the same number of triangles
and so on).

The calculation of the odds ratio is easy for binary attributes in undirected
networks. If qa is the activity estimate and qh the homophily estimate, then the
conditional odds ratio for a tie between an innovator and noninnovator is simply exp
qa, and between two innovators is exp(2qa + qh).13 So for the first model, the condi-
tional odds ratio for a tie between an innovator and a noninnovator is about 1.1; in
other words, the propensity for ties between innovators and noninnovators is not
much different than for ties between noninnovators. However, for ties between two
innovators, the conditional odds ratio is nearly 3. So, according to this model, a tie is
much more probable between two innovators than a tie involving a noninnovator.
(Of course, there are more noninnovators, so there can be more noninnovator ties,
but the propensity for ties between innovators is much greater.)

We do not report all the goodness of fit details here. Suffice to say that this model
reproduces many graph features well but is very bad at predicting when ties involve
politicians and senior bureaucrats. In the second model, we have included activity
and homophily effects for politicians. The significant effects from the previous model
remain. While the estimate for politician homophily seems quite large, the standard
error is also substantial, so we cannot be confident that this estimate is reliably
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different from zero. Goodness of fit suggests that this model is unable to predict
when ties involve senior bureaucrats.

Our third and final model includes parameters for the senior bureaucrat
attribute. Now we see some important changes in the estimates. The multiple
connectivity estimate is now significant (and negative). The homophily effect for
innovators is no longer significant, and instead we have a negative significant effect
for bureaucrat homophily and a positive significant effect for bureaucrat activity.
So senior bureaucrats tend to express more network ties, but—taking this into
account—they tend not to communicate with each other. The odds ratio for a senior–
senior bureaucrat tie is over 2 but for a senior–junior bureaucrat tie is nearly 4.
Strategic communication between bureaucrats in this local government does cross
divisional boundaries at the same level within the hierarchy, but it is more likely to
go up and down the hierarchy.

Moreover, the disappearance of innovator homophily as a significant effect
suggests that the cross-level bureaucratic communication subsumes the innovation
effect. In this bureaucracy, there are four senior innovators and five junior innova-
tors. The density of ties between these two groups is 0.153, much larger than the
overall network density of 0.065. These innovators are communicating among
themselves, but this is better explained by the strong effects for cross-level com-
munication than for innovator homophily. This result emphasizes the value of
having a statistical model in which a number of effects can be considered simul-
taneously, to protect against spurious results that may be better explained by other
effects.

The appearance of a small but significant negative connectivity parameter
suggests that once one controls for cross-level bureaucratic communication, there
is a small tendency against network brokerage. In other words, we infer that
brokerage in this network, when it occurs at all, tends to occur among the
bureaucrats.

These models point to some network characteristics of this government that
could be expected—there is no strong centralization around a single actor, but
several clusters that reflect the formal structure, and a substantial amount of closure
that is not surprising in an environment where the actors have to work together
closely. They also confirm the well-established divisions between the political and
administrative arms of governments and the hierarchical nature of much communi-
cation within the second of these. Most interestingly, the third model suggests that
these divisions are more important than innovation status and innovator homophily.
In policy theory terms, we might infer that hierarchy is important for innovation
inside government, because for this local government, most communication between
innovators flows up and down the hierarchy. This is in contrast to what is often
claimed about innovation in the private sector—that it is more likely to occur outside
formal structures.

It also leads us to a point of circularity: Are you seen to be an innovator because
you hold a position that has enough inbuilt scope for you to be innovative, or do you
get to hold such a position because you are recognized as innovative? To unpick such
a question would require longitudinal data.
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SAOMs

SAOMs (also known as stochastic actor-based models) are specifically designed
for longitudinal network data.14 The original versions of SAOMs were intended to
examine the dynamics of network self-organization (Snijders, 1996, 2001). More
recently, these models have become a major tool for investigating the coevolution of
network structures and individual behaviors, so that they are one of the few prin-
cipled methods to test whether selection or influence, or both, are present in network
data (Snijders, Steglich, & Schweinberger, 2007; Steglich, Snijders, & West, 2006).
A recent (2010) special issue of the journal Social Networks has been dedicated to
these models, so we restrict ourselves here to a conceptual summary of the modeling
approach and refer interested readers to the special issue, especially to Snijders, van
de Bunt, and Steglich (2010), which provides an excellent tutorial overview. Snijders
et al. (2010) explains how SAOMs fit in with other longitudinal methods proposed
for social network data.

SAOMs are used with network panel data, that is, observations of a network, as
well as actor attributes, at two or more specific time points. The focus is on directed
networks because actors are assumed able to make choices about where to direct
their outgoing ties. Network ties are not assumed to be immediate transactions (such
as an e-mail exchange or a telephone call) but a relationship of indefinite duration,
albeit one that can change across the time period of the study.

Snijders et al. (2010) describe the four basic assumptions underpinning SAOM15:

• Time is continuous, so that even though the network is observed at discrete time
points, changes to network ties (or to attributes) may have happened at any
intervening moment between observations. This assumption permits configura-
tions of network ties to be built up, tie by tie, between observations.

• The change in the network is a Markov process, which means that the appear-
ance or disappearance of a network tie, or a change in attribute, depends only on
the state of the network at that particular moment in time, and not on previous
moments.

• Actors control their outgoing ties.

• At any moment, one randomly selected actor can change one tie, or alter one
attribute. This keeps the modeling relatively simple, so that there is only one
basic change at any moment.

SAOMs model the change process, and so condition on the first observation. In other
words, a SAOM assumes the network at the first time point and does not attempt to
model the structure of that first network. It is the change from that first observation
to the second (and perhaps subsequent) networks that is modeled.

In using a SAOM, we are in effect assuming that there are many tie (and
attribute) changes that we have not directly observed, in getting from the first to the
second (and subsequent) observations. The model estimates parameters through
simulation. Many possible sequences of changes are simulated according to certain
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rules implicit in model specification. These rules are specified in the objective function,
which determines whether a change is likely or not. The objective function can be
seen as an actor’s set of preferences for their structural position. For instance,
suppose there is a tendency for closure in the network. Then we want an objective
function where there is a relatively high probability for a tie to come into existence
when it closes a 2-path into a triangle.

So, a number of effects in the objective function are chosen by the researcher
in modeling a given dataset. Parameters are the weights given to these effects.
To estimate parameters, an initial guess of parameter values is made, sequences of
changes are simulated, and if there is a difference from the second network, the
parameter values are adjusted accordingly. If the parameter values eventually con-
verge, these become the estimates for that model. The full details of the estimation
algorithm are given by Snijders (2001).

When modeling data for the coevolution of networks and behaviors, there is a
separate objective function for changes in ties and for changes in attributes. Attribute
variables in the objective function for tie changes are in effect social selection pre-
dictors, whereas the same variables in the objective function for attribute changes
describe social influence effects. In this way, by estimating parameters for the
two objective functions, influence and selection processes can be simultaneously
assessed.

Some of the most fundamental parameters relate to effects we have discussed
above, such as closure, degree-based processes, and homophily. In that sense, these
models bear relationship to ERGMs: in fact, an ERGM can be seen as a SAOM in
equilibrium (Snijders et al., 2010). However, there are also many other possible
effects that can be included in a SAOM. Snijders et al. (2010) provide a list of some of
the more important in their appendix.

The results from the SAOM will produce estimates for structural effects
(network self-organization) as well as attribute effects for both selection and influ-
ence processes. It is not uncommon to see evidence for both processes simulta-
neously in empirical datasets. For instance, Snijders et al. (2010) present an example
of friendship and delinquency among school children. They concluded that there
was clear evidence for delinquent children to tend to become friends as well as
evidence for the children to influence the delinquent behavior of their friends.

SAOMs are a principled way to model network panel data. Because they are com-
putationally intensive in estimation, their application to very large network datasets
with hundreds of nodes may be limited. Nevertheless, for very many empirical
longitudinal network datasets in the social sciences, they are the preferred method.

Conclusions

Network-based research in the social sciences is increasingly popular. We need
novel statistical methods to analyze empirical network data because a network con-
ceptualization implies that there will be dependency among observations, often in
complex ways that mean standard statistical approaches are not applicable. This
article has described some common statistical methods that are used in the articles in

396 Policy Studies Journal, 40:3



this special issue. There are, however, an increasing number of other statistical
modeling techniques being developed. Even the methods we have described are
experiencing ongoing methodological development, so that the current state of the
art is not the final word. Statistical modeling of social networks is one of the most
rapidly growing areas of network science. We can expect to see further advances into
the future.

It is worthwhile concluding with a few comments about causality, which is
sometimes a contentious issue in network research. In this article, we have tried to
steer away from making claims about whether and how causality may be attributed.
The debate about causality in networks is often related to distinguishing selection
from influence. In this article, in describing SAOMs, we have implied that causal
inferences are better obtained from longitudinal data, as is the case in other areas of
social science, although of course this is not always definitive. Controlled experi-
ments to infer causality, a common approach in medical and related sciences, are not
always easy to design for network research. Taking parts of a social system (e.g.,
individuals or dyads) into a laboratory removes their systemic embeddedness and
thereby undermines inference. Complex systems science provides a different per-
spective: if networks represent a complex adaptive social system, the notion of
traditional causality may be inappropriate; rather, the system evolves according
to its own internal dynamics (this is a perspective that fits in quite well with ERGM
and SAOM approaches). As a result, for the purposes of this article, we have been
deliberately agnostic about relating the specific methods to causal inference. These
issues go beyond network studies and apply to social science more generally.
Readers will have their own points of view. For what it is worth, our own position is
that, if it is necessary to infer causality, this is best done in a programmatic way, with
a number of studies reinforcing causal interpretations in different ways.

The statistical modeling of social networks has been little used in policy studies,
which is rather surprising given the rise of research interest in policy networks and
network governance since the 1990s and the increase in network forms of gover-
nance in many countries over the last two decades (Lewis, 2011). There have been
relatively few attempts to map and understand the network structures that exist
inside governments and play an important role in shaping policymaking, although
these have increased in the last 5 years. There are even fewer attempts to model these
networks and test policy theory. Research on the many networks introduced by
governments and others to coordinate activities of many kinds across public, private,
and nonprofit sectoral boundaries is burgeoning as a descriptive enterprise. Statis-
tical network models promise to help illuminate the policy process by moving from
description to theory testing. Such advances should improve the analysis of policy,
and so will surely continue to grow.
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Notes

1. This approach amounts to pseudo-likelihood estimation for an ERGM-based social influence model
(Robins, Pattison, & Elliott, 2001). There has been plenty of work over the last 10 years on pseudo-
likelihood estimation for ERGMs. The best that can be said is that it may be a first approximation. Van
Duijn, Gile, and Handcock (2009) concluded unequivocally that it is always better to use the maximum
likelihood estimate (through the estimation procedures described below) than pseudo-likelihood
estimation even when it is corrected for bias.

2. The QAP procedure is most commonly applied to unipartite networks, but there is no reason why it
could not be extended to bipartite data structures.

3. Of course, one needs to pick an association statistic that is appropriate to the measurement of the
network ties. For instance, a Pearson correlation would be best applied to valued rather than binary
data.

4. There are also social influence versions of these models, sometimes called Autologistic actor attribute
models (Daraganova & Robins, in press), which we briefly describe below.

5. The so-called Markov chain Monte Carlo maximum likelihood estimation.

6. Nevertheless, it is possible to compute a conditional log-odds or probability of a tie being present,
conditional on the neighborhood of other ties that are present in the data. However, it is not possible
to (say) consider an increase in the number of triangles in a neighborhood without increasing other tie
configurations as well, so this is not always that useful as a guide to interpretation.

7. The previously popular Markov random graph models (Frank & Strauss, 1986) are problematic in a
number of ways and in most circumstances should be avoided. Even though a social circuit param-
eterization is much to be preferred, there is no guarantee that a social circuit model will be nonde-
generate, so there needs to be careful assessment of the estimation procedure (e.g., Robins et al., 2009).
Degeneracy in ERGMs is a topic in its own right: suffice to say that parameter estimates may not
converge, or some sets of parameter estimates might imply simple graphs (e.g., full or empty) that do
not resemble the data. In such a case, the parameterization is not correct for the data and an alternative
model specification could be tried.

8. In the statnet program, the alternating parameters and statistics have a slightly different form and are
referred to as geometrically weighted (GW): the GW degree distribution, GW edgewise shared
partner distribution, and GW dyadwise shared partner distribution parameters, respectively. See
Snijders et al. (2006) and Hunter (2007).

9. Taking volunteers in this fashion skews the sample toward those more interested in this topic. Because
the purpose was to study innovation, this bias represents no threat, although it limits how far the
findings can be generalized to governments with little interest in innovation.

10. The sample group was identified by an internal liaison officer at each council based on internal staff
lists. Response rates were maximized by a minimum of two follow-up calls to all potential respon-
dents within the sample.

11. Nomination-based methods for locating key actors have attracted criticism for being highly subjective.
When dealing with actors who work in close proximity to one another, it is reasonable to expect that
they will be well informed about one another’s reputations for work-related performance. This

398 Policy Studies Journal, 40:3



assumption was supported by the close correlation between “key innovator” nominations and the
prominence of those identified as important actors in the 16 innovation case studies examined as part
of the larger study.

12. In each of the four local governments, no nominations were directed to actors outside.

13. The factor of 2 arises because the formation of a tie between two innovators creates one homophily
configuration and two activity configurations.

14. Because these models are implemented in the SIENA software (Ripley, Snijders, & Preciado, 2011),
they are sometimes also called SIENA models.

15. For modeling coevolution of networks and behaviors, the assumptions are slightly more complicated
but nevertheless are a natural extension of these four basic ideas.
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